不知道怎么用泰勒公式?
泰勒公式:f(x)=f(x0)+f(x0)'(x-x0)+0(x-x0)
在点x0用f(x0)+f('x0)(x-x0)逼近函数f(x)
但是近似程度不够
就是要用更高次往逼近函数
当然还要称心误差是高阶无穷小
所以对比上面的式子
就有:
pn(x)=a0+a1(x-x0)+a2(x-x0)^2+。
。。+an(x-x0)^n
这里an=pn^(n)(x0)/n!
麦克劳林公式 :是泰勒公式(在x。=0下)的一种特殊形式。
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn
其中Rn是公式的余项,可以是如下:
1。
佩亚诺(Peano)余项:
Rn(x) = o(x^n)
2。尔希-罗什(Schlomilch-Roche)余项:
Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
3。
拉格朗日(Lagrange)余项:
Rn(x) = f(n+1)(θx)x^(n+1)/(n+1)!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
4。柯西(Cauchy)余项:
Rn(x) = f(n+1)(θx)(1-θ)^n x^(n+1)/n!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
5。
积分余项:
Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!
[f(n+1)是f的n+1阶导数]。
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (泰勒公式,最后一项中n表达n阶导数)
f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (麦克劳林公式公式,最后一项中n表达n阶导数)