神经元的雪崩:大脑是否处于混沌与秩序的临界点?
自组织临界性的经典模型:Bak-Tang-Wiesenfeld 沙堆,由2800万粒组成
导语关于大脑是否处于自组织临界状态,以及大脑如何涌现出思维与意识,学界有继续多年的讨论。在今年发表在 Physical Review Letters 的一项工作中,来自巴西的物理学家通过分析多种动物的大脑,找到了大脑处于临界状态的新证据。
来自巴西的物理学家通过分析小鼠和其他动物的大脑,发现大脑在两种操作模式之间保持平衡状态,运作在一种多变也多能的临界状态。这个研究结果对传统的临界大脑假说提出了挑战。
论文题目:Criticality between Cortical States
论文地址:
印第安纳大学 John Beggs 实验室的一盘大鼠脑皮层切片。
了解大脑的浩大神经元网络如何处理信息,对神经科学家来说一直很有吸引力。但这同样是个难题,其中部分工作,就是理解大脑如何用同一个物理结构,处理生活中无数的需求与信息。“假如大脑处于无序状态,那么它就很难处理信息,假如大脑太井井有条,那么就很难适应环境的转变。”来自巴西伯南布哥联邦大学的物理学家 Mauro Copelli 如是说。
在 20 世纪 90 年代,物理学家 Per Bak 假设大脑的才能来自临界性,这个概念起源于统计力学,说的是在稳定性和紊乱之间犹豫的复杂系统。想想冬天的雪坡,初冬时节不太可能发生雪崩,但至于风积存一个冬天,再发生雪崩的机会就比较大了。在这个转变过程中,可能存在这样一个时间节点,某处有特定的积雪,这个积雪处于一个临界状态。可能下一次的外力骚乱就会引发雪崩或其他事情。
不同规模的雪崩发生的可能性是不同的,规模较小的雪崩比规模大的雪崩更频繁地发生。在物理学家称之为临界点(critical point)的模型中,事件的大小和发生频率之间具有简单的指数关系。Bak 认为大脑就调整到这样一个最佳位置,会使大脑成为强力而灵巧的信息处理器。
多年来,这一看点几经起伏。第一个实验证据来自于 2003 年的大鼠脑切片。印第安纳大学的生物物理学家 John Beggs 发现,引发神经元的连锁反应(也喊神经元雪崩),具备一系列的临界点,由此引发了大量的后续研究。然而,指责者觉得这一结论下得为时尚早,同样的法则可能出现在服从幂律法则的随机系统中,比如猴子打字机模型。
这一看点的拥护者主要面临两个问题:定义幂律的临界指数因设置而异,这意味着与大脑响应的通用机制背道而驰。此外,科学家在实验中发现,同步神经元有着更强的临界性,可是这种神经活动并没有分布在清醒动物的大脑中,而是经常发生于深度睡眠期间,这让科学家很困惑,他们没预料到临界性和同步性之间的关联。
为了研究这个问题,Copelli 和他的协作者使用一种特殊的麻醉剂给大鼠麻醉,这种麻醉剂让大脑在同步的极端情状下摆动,有时以典型的睡眠同步方式放电,其他时间类似于清醒大脑的随机静态放电,然后用几十个金属探针笔录下初级视觉皮层中神经活动的增强。科学家发现,神经元雪崩的大小和继续时间以及大小和继续时间之间的关系都符合具有不同临界指数的幂律分布。——这一发现与 2003 年 Begg 在死亡的大鼠脑切片中的发现一样。
巴西,伯南布哥大学的监视器实时展示着大鼠脑内的电生理笔录。
进一步研究发现,当神经元以中等同步性放电时,这三个指数能以一个简单的等式组合在一起。这种指数间的关系就称心了指责者们在 2017 年提出的更严厉的临界性测试。麻醉大鼠的大脑多数时间在这个状态四周犹豫。
“这就像一杆冒着烟的枪,你再也不能回避它了。”未参与这项研究的Beggs 说。“很难说这是随机的。”
论文图1:尖峰雪崩的大小和寿命的分布
然而,当研究小组详尽研究临界点在哪儿时,正如临界大脑假说所推测的那样,他们发现大鼠的大脑在低神经活动和高神经活动的阶段之间没有平衡;相反,临界点把神经元的相干放电阶段和大量神经元非相干放电阶段分开。这可以阐明过往临界性的研究要么有要么没有的境地。Copelli 的同事兼该研究的协作者 Pedro Carelli 在5月底出版的物理评论快报中说:“事实上我们整合早期研究数据后发现,该结论确实指向了更通用的法则。”
但是被麻醉的大脑并不是自然状态。因此科学家对自由状态的小鼠自然状态下的神经活动数据进行了重新的分析。他们再次发现,这些神经活动有时候会符合 2017 年所发现的黄金法则。然而与麻醉的大鼠不同,小鼠大脑中的神经元大部分时间都是异步发射,远离所谓的同步临界点。
论文图2:在不同的尖峰变异性水平上,尖峰雪崩的大小与寿命之间的幂律关系
Copelli 和 Carelli 承认,这一结果对大脑更喜欢处于临界点四周的看念提出了挑战。但他们也强调,假如不往进行清醒动物实验(这实验非常昂贵),他们无法最终阐明大鼠的数据。Copelli说,例如,在实验过程中睡眠不佳可能会使动物的大脑偏离临界状态。
他们还和同事们分析了猴子和海龟的公开数据。虽然数据集非常有限,无法完全确定三个临界指数之间的关系,但科学家计算了两个不同幂律指数之间的比率,确定了神经元雪崩大小和继续时间的分布。他们发现,这个比率始终是相同的,这对于物理学家来说可能意味着更通用的法则。
法国国家科学研究中心(CNRS)的阿兰德斯特克斯(Alain Destexhe)提出了将三个指数作为临界性检验的方程式,称结果的普及性“令人惊诧”,但他表达不确定是否支持了大脑临界性假说。他指出,当大脑无感觉输进时,警觉状态下的神经元雪崩与深度麻醉下神经元雪崩是类似的,临界性可能与大脑如何处理信息无关,可能是由于大脑动力学的其他方面。
接下来,巴西团队期看研究大鼠的同步和异步大脑阶段如何与行为相关,这一难题源于一个现象:同步性爆发在睡眠中很常见,而且也出现在清醒的大脑中。
另外的研究将睡眠与恢复不稳定大脑的临界点联系起来,Beggs 认为进一步的研究有朝一日可能会在心理健康与大脑物理学之间建立更深层次的联系。
但首先,Copelli 说,临界性领域需要解决更基本的问题。“目前的理论无法阐明结果,”他说,这意味着这项新发现可能为新理论的提出做了展垫。”
翻译:Frank Xu
审校:Leo
编辑:张爽
原题:
Do Brains Operate at a Tipping Point? New Clues and Complications
原文链接:
/